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Abstract

In this paper the exact analytical solution of the motion of a rigid body with arbitrary mass distribution is derived in the
absence of forces or torques. The resulting expressions are cast into a form where the dependence of the motion on initial
conditions is explicit and the equations governing the orientation of the body involve only real numbers. Based on these
results, an efficient method to calculate the location and orientation of the rigid body at arbitrary times is presented. This
implementation can be used to verify the accuracy of numerical integration schemes for rigid bodies, to serve as a building
block for event-driven discontinuous molecular dynamics simulations of general rigid bodies, and for constructing sym-
plectic integrators for rigid body dynamics.
© 2006 Elsevier Inc. All rights reserved.

MSC: 65C20; 93B0S

Keywords: Rigid body rotation; Event-driven molecular dynamics; Rigid body integrator; Exact solution

1. Introduction

The importance of the dynamics of rigid bodies in physics and engineering has been recognized since the
early 19th century. The early work of Euler, Hermite, Poisson, Jacobi and many others on exactly soluble
systems lead to great advances in the field of applied mathematics as well as in mechanics. More recently,
rigid hard spheres served as the first prototypical model for fluids treated by computer simulation [1]. Today,
rigid bodies are used to model phenomena on a variety of different length scales: On molecular length scales,
rigid bodies are used in the modeling of the microscopic dynamics of molecules in condensed phases [2-4], on
a mesoscopic scale, they are used to construct simple models of polymers and other complex systems [5], while
on a macroscopic level they play an important role in robotics. The dynamics of rigid bodies is also of rel-
evance to the computer game industry, where many improvements in simulating rigid bodies have been
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developed [6]. Finally, on an even larger scale, many astrophysical objects such as planets, satellites and space
crafts can be regarded as rigid bodies on certain time scales [7,8].

According to the laws of classical mechanics, the motion of a rigid body consists of translation of the center
of mass of the body and rotation of the orientation of the body about its center of mass. In the most general
case in which the body is subject to forces and torques, an analytical solution of the dynamics is not possible
and a numerical scheme is required to integrate the equations of motion. With the advent of powerful com-
puters, much work has been devoted to finding stable and efficient integration schemes for rotating rigid
bodies [9-12]. The use of numerical integrators is now so widespread that they are frequently used even in
cases where an analytical solution of the dynamics is available. This is unfortunate, since an exact solution
cannot only serve as a special case against which numerical integration schemes may be tested, but can also
be directly used in so-called discontinuous molecular dynamics of rigid bodies, in which the bodies perform
free motion in between interaction events. A hard sphere gas is the prototypical example of such a system.
In these kinds of simulations, using an exact solution of the free dynamics yields an enormous computational
benefit compared to having to integrate the free dynamics numerically (see e.g. Refs. [3] and [4]). Furthermore,
for molecular dynamics of systems with a continuous potential, an exact solution is also often useful in con-
structing so-called symplectic integration schemes, and typically leads to enhanced stability [13,12,14,15].

Perhaps the principal reason why the analytical solution of the motion of a free rigid body is seldom used is
that the general solution is simply not well-known. Many advanced textbooks in mechanics avoid discussing
the motion of general rigid bodies, and only consider certain symmetric cases [16] in which the equations of
motion are particularly simple. This probably is due to the fact that the general solution—apparently first
found by Rueb [17]1in 1834 and later completed by Jacobi in 1849 [18—involves special functions, called ellip-
tic and theta functions, which are perhaps less familiar than other special functions. Furthermore, even when
the case of a general rotor is discussed [17-19,8,20], the treatment of its motion is often incomplete, in rather
abstract form (using complex-valued functions) and presented in a special inertial coordinate frame rather
than a general laboratory inertial frame.

The goal of this paper is to demonstrate that none of these issues needs to be an obstacle to the use of the
exact solution of the equations of motion of an asymmetric rigid body in numerical work. It will first be shown
that although the derivation of the general solution of the equations of motion of a rigid body requires a bit of
complex analysis, the final result can be expressed without any reference to complex arithmetic. Secondly, the
solution will be formulated in a general inertial frame and for general initial conditions of the rigid body.
Finally, it will be shown that the special functions occurring in the solution can be numerically implemented
in an efficient fashion. Based on these considerations, the numerical implementation of the (admittedly non-
trivial) motion of an asymmetric rigid body in the absence of forces and torques is relatively straightforward.

The paper is organized as follows: In Section 2, the motion of a rigid body is reviewed starting in Section 2.1
with a brief overview of the properties of rigid bodies. Subsequently, in Section 2.2 the equations of motion are
given, while in Section 2.3 these are specialized to the case of free motion. The novel part of the paper starts in
Section 3, where a new derivation of the exact solution of the time dependence of the orientation of the body is
given, first in general and then explicitly for the spherical top, the symmetric top and the asymmetric top (Sec-
tions 3.1-3.3, respectively). In Section 4, some further numerical issues are addressed. An example is given in
Section 5 and the paper ends in Section 6 with a discussion of the results and their possible applications.

2. Review of the motion of rigid bodies
2.1. Rigid bodies

The shape of a rigid body is specified by the set of all material points {F#} of the body. The points
¥ = (X, i, ;) are three-dimensional vectors with respect to a reference coordinate frame called the body frame,
and constitute a reference orientation of the body [20]. Furthermore, a mass m; is associated with each material
point. The mass distribution of the body plays an important role in its dynamics.

Since any translation or rotation acting on all points #; leaves the shape of the body unchanged, there is an
arbitrariness in the choice of body frame which can be exploited. By a suitable translation, one may always set
the center of mass to be in the origin, i.e.,
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> i =0. 2.1
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Furthermore, using a suitable rotation, the moment of inertia tensor I can be brought to its principal
form:

P42 Xy - I 0 0
1= "m| x5 #+42 -9z |=|0 L 0] (2.2)
" %z —vE X+ 0 0 I

For subsequent developments, it will be assumed that these transformations have been performed.

Because the body frame is fixed to the body, the material points # are independent of time. How-
ever since the body itself moves through physical space, the location of each point 7; in the physical coor-
dinate system, or lab frame, must be determined as a function of time to describe its motion. The position
of mass point i in the lab frame will be denoted by rfz) = (x,(¢),y{t),z(t)). Since the body is rigid, its
motion is a time-dependent orientation-and-distance-preserving transformation from the body frame to
the lab frame. The most general such transformation is a combination of a translation and a
rotation:

r(t) = R(t) + Al (¢)#. (2.3)

Here and below, matrix—vector and matrix—matrix products such as AT(t)i',- will be denoted implicitly, i.e, with-
out a “-”, which will only be used for inner products. For notational simplicity, the explicit time dependence
will be omitted in most expressions, i.e., r,(¢) will be denoted simply by r;. Exceptions are if the time argument
is equal to zero (e.g. r{0)) or integrated over.

In Eq. (2.3), the vector R denotes the position of the center of mass at time #, while the orthogonal matrix
AT represents the orientation of the body with respect to the center of mass at that time and is often called the
attitude matrix. Note that A transforms vectors from the lab to the body frame, while its transpose A" trans-
forms vectors from the body to the lab frame.

The motions of the different material points of a rigid body are obviously closely related. Instead of work-
ing with the (linear) velocities of all points, one can instead use a formulation of the dynamics that utilizes the
angular velocity vector @ = (w1, w,, w3) of the body around its center of mass. This angular velocity vector is
defined such that its direction coincides with the rotation axis and its magnitude coincides with the rate at
which it rotates. As a consequence of this definition, the velocity of any point of the rigid body satisfies the
standard relation [16]

v,=V+ox (@ —R), (2.4)
where ¥ = R is the velocity of the center of mass. Defining the antisymmetric matrix
0 —w3 W
W)= s 0 - |, (2.5)
—wy W 0

and using Egs. (2.3), (2.4) can also be written as

v, =V + W(0)A'F. (2.6)
Taking the time derivative of Eq. (2.3) and using Eq. (2.6), one sees that w and A are related via

ATA = W(w), (2.7)

Given the central role of rotation matrices below, it is useful to establish some notation. A rotation
matrix U is a special orthogonal matrix that can be specified by a rotation axis i = (ny,n,,n;3) and an angle
Y. Here n is a unit vector, so that one may also say that any non-unit vector ¥ can be used to specify a
rotation, where its norm is equal to the angle y and its direction is along the axis z. In fact, one can express
this rotation matrix as U(yn1) = exp W(yi1). The explicit form of this rotation matrix may be found using
Rodrigues’ formula [16].
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2.2. Dynamics

It is clear from Eq. (2.3) that the motion of a rigid body as a function of time is determined by the time
dependence of the center of mass vector R and the attitude matrix A. According to the mechanics of rigid
bodies, these follow from the equations of motion

F=P, =1L (2.8)

Here, F is the sum of all forces acting on the body, P = MV (with M = >".m,) is the total momentum, t the
total torque with respect to the center of mass of the body and L = Iw is the angular momentum. One may
equivalently write

. d
F=MV, 1=—(lw). (2.9)
dr
The latter equation is more conveniently written in the body frame using @ = Aw, ¥ = Ar and I = AIA', which
yields
7= AA'I® + 1o = AW(0)A'To + 1o = W(a)Io + 1o, (2.10)
where Eq. (2.7) was used to obtain the second equality, and the third equality was obtained using
AW(0)A" = W(Ao) = W(a). (2.11)

Writing out Eq. (2.10) in its components gives the so-called Euler equations. Solving these equations yields the
time dependence of the angular velocities in the body frame. To consequently find the attitude matrix A, one
uses Egs. (2.7) and (2.11) to find

A=-W(@A. (2.12)

2.3. Force and torque-free case

In the special case where all external forces and torques are zero, i.e., F =0 and 7 = 0, the equations of
motion to solve simplify to

V=0, Io=-0xId, A=-W@A. (2.13)

In the absence of forces and torques, the dynamics of the system is invariant under rotations and under trans-
lations in time and space. As a consequence of these symmetries, the energy E, momentum P and angular
momentum L are conserved, where E is given by

E=Er+Eg (2.14)

with the translational and rotational energies equal to

1 , 1 )
Er =5 |P[" =S M|V,
M 2 (2.15)
o 1o = = (L] + La; + [;d3),
respectively. .
The time dependence of the translational part of the motion follows from the equation of motion V = 0,
which is easily solved to obtain

V= ¥(0),

R = R(0) + V(0)z. (2.16)

Since ¥(¢) = V(0), the translational energy Et is conserved in the dynamics, which, in turn, implies that the
rotational energy Eg is also conserved.

To solve the rotational equations of motion is less trivial. One has to solve the middle equation of (2.13),
which, written out in components, reads
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Loy = @nds(ly — 1),
Ly = @3y (I — 1), (2.17)
[36:2)3 == 6)1&)2(11 —[2)

The general solution of this set of equations will be presented below. Given this solution, the remaining task is
to determine the attitude matrix A from Eq. (2.12).

Although the general solution for A is hard to find in any textbook, it can be found in Jacobi’s treatise on
rigid body motion from 1849 [18]. Unfortunately, for mathematical elegance, the attitude matrix was only
specified up to a rotation at a uniform speed which was not clearly identified, so that its numerical implemen-
tation is not altogether clear. Furthermore, Jacobi’s derivation relies heavily on geometric arguments and
Euler angles, which often pose problems in numerical applications. For this reason, the next section contains
a novel derivation of the exact solution of A without reference to Euler angles, leading to an expression which
is more readily implemented.

3. Exact solution of the attitude matrix in the absence of torques

While discussions of how to solve the Euler equations in the body frame are common, one rarely sees any
mention of how to go about integrating the equation for the attitude matrix. Therefore, we have chosen to
treat this derivation in a bit more detail than one would perhaps expect from a computational paper. First
the general form of the solution will be derived, after which the three different case of rigid bodies are explicitly
considered: spherical bodies (Section 3.1), symmetric tops (Section 3.2), and asymmetric tops (Section 3.3).

To obtain the general form of the attitude matrix A, we have to solve Eq. (2.12). Since this is a linear equa-
tion, its solution can be written in the form

A = PA(0). (3.1)

Here, P is a time-dependent matrix which also satisfies Eq. (2.12), but with initial condition P(0) = 1. This
corresponds to a case in which the body and lab frame initially coincide, i.e., in which the body is in the “up-
right” position. In this upright lab frame, the angular momentum vector is given by

L
L=|L, | =L0). (3.2)
L;

It will prove to be more convenient to work in a different lab frame, called the invariant frame (with vectors
in this frame denoted by primed quantities), in which the angular momentum vector is along the z-axis and is
equal to L' = (0,0, L)". Such a frame can be found by performing a rotation of the original frame through a
rotation matrix T/ (0) (the reason for the peculiar notation will become clear below). This rotation is not
unique and can be chosen such that one first rotates around the z-axis until the rotated angular momentum
vector no longer has a y-component, and then subsequently rotates around the y-axis to remove the x-com-
ponent of thel angular momentum vector as well. Denoting L, = [Zf + 1:%]1/ ?. the combined rotation is easily
shown to be

; ; L(0)  Ix(0) Li(O)L3(0)  Ly(0Ls(0) _ L.(0)
B0 —HO\ [T fo O LOU IO L
T/ (0) = 1 LO) L) = ~kO  LO
1(0) 0 0 Lo Lo ° L.(0) (0) 0 (3.3)
LO o LO . N N
L L O 0 l léo) 220) L3L(0)

ati ! —
rotation to get L/.(0)=0 rotation to get L, (0)=0

! For the special case when L, (0) = 0 one may take T/ (0) = diag(41, 1, +1) where the sign is chosen according to L3(0)/L = +1, i.e.,
depending on whether in the original lab frame L pointed in the positive or the negative z-direction.
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This rotation is defined such that if v is a vector in the original lab frame, then v' = T’lT (0)v is the corresponding
vector in the invariant frame. To find the matrix corresponding to P in this new frame, note that since P relates
vectors to the body frame through v = Py, so that ¥ = PT}(0)» = P'v/, one can identify

P’ = PT)(0). (3.4)
Since T}(0) is a constant matrix multiplying on the right, P’ also satisfies Eq. (2.12) with initial condition
P'(0) =T} (0).

The convenience of this choice of frame becomes clear when P’ is written in terms of its columns,

P’ = [ i) (3.5)

and one notes that
0 PL L
wm=P| 0 =7 =1 (3.6)

1

the components of which are known once the Euler equations are solved. Thus, by this choice of frame, one is
able to determine the third column of the matrix P’.

The remaining elements of P’ can all be expressed in terms of a single time-dependent angle . This is due to
the orthogonality of P’, which implies that the other two columns #; and &, must lie in a plane orthogonal to
i3 and must also be orthogonal to each other. Denoting ¢; and e, as two chosen orthogonal unit-vectors in this
plane, one can therefore write

ity = & cosy — e siny, (3.7)
i, = e siny + e, cosy, (3.8)
where the unit-vectors ¢, and &, are chosen to be:>
_L
e.x iy e xL Ly
éz = AZ — = AZ — = :/:_1 N (3.9)
e. X i3] e, x L| I
Lils
LL
él = éz X ﬁ3 = % s (310)
_L
L

where ¢, = (0,0,1), and we have used the fact that |e. x L| = (L? + Z%)l/z = L, . Other choices of orthogonal
unit-vectors ¢; and e, change the as-of-yet undetermined time-dependent angle by a time independent offset.
The current choice has the advantage that the matrix [e,(0) e,(0) i5(0)] is identical to T)(0), so that
P'(0) = T} (0), and hence

¥ (0) = 0. (3.11)
Using Egs. (3.7) and (3.8), P’ has effectively been written as a product of two rotation matrices,
P =TT, (3.12)
where
Ly _ L L
LL; Ly L
T, = [¢1em3] = % ﬁ b, (3.13)
&0k

2 For the special case when L, = 0 one may take &, = (0,1, 0)T and ¢; = &, X u3.
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cosyy siny O
T,=| —siny cosy 0 | =U(—yz). (3.14)
0 0 1

Note that T} in Eq. (3.13) is a rotation matrix because ¢;, ¢; and #; form an orthogonal set by their construc-
tion in Egs. (3.9) and (3.10). The matrix P can therefore be written as

P = T|T,T} (0). (3.15)

For the special cases of the spherical top and symmetric top, it is more convenient to express P as a product of
two rotation matrices (implicitly also found in Ref. [8]):

P=TT,, (3.16)
where
T, = T, T} (0), (3.17)
T, = T, (0)T,T} (0). (3.18)

Note that T; and T| are determined by the solution of the Euler equations and require no further manipula-
tions once the general solution of L is known.
Turning next to the matrix T, noting that for any rotation R and vector x, RU(x)R" = U(Rx) and that

T’ (0)z = L(0)/L, the matrix T, can written as a rotation by an angle of — around the axis L(0)/L, i.e., using
Eqgs. (3.14) and (3.18),

T, = U(—yL(0)/L). (3.19)

The final task to determine P consists of deriving a differential equation for the time-dependent angle y and
solving it subject to the initial condition y(0) = 0 (cf. Eq. (3.11)). To obtain this differential equation, note that
from Egs. (2.12), (2.7) and (3.9), it follows that

ﬁ] = - X il],
and hence from Eq. (3.7) one finds
&1 cosy — ey siny — exsinyy — ) coSY = —@ X &, CosY + @ X & sin .

Taking the inner product with &,, using that é; - ¢, = (1/2)d|és|*/dt = 0 and dividing by cosy,’ yields the dif-
ferential equation for the angle, y = Q, where the time-dependent frequency Q2 can be expressed as

Q= —é1é2+é2' ((Z)Xé]) = —él éz—'—(b (é] Xéz) = —él é2+&)ﬁ3 = —él é2+6)i/L
It follows from Eq. (3.9) and (3.10) that
Ly(LoLy — LiLy)
LL% '
Using Eq. (2.17) yields Lﬂ = 3L, — Ly and Zz = @ Ly — @sL,, whence Q = L(Zlcbl +izd)2)/ii, or, ex-
pressed in terms of conserved quantities and @; only,

o L@E ~ 1)

e1~82:

= (3.20)
L* -~ a3
The angle  is then given by
t
V= / dr Q). (3.21)
0

3 When cosy = 0, one can instead take the inner product with é; and divide by siny, with the same result.
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The formal result for the matrix P, given by Eqgs. (3.13)—(3.19), (3.20) and (3.21), still contains a time inte-
gral for  whose integrand depends on the angular velocity component @;. Hence the time dependence of this
component of the angular velocity must be specified to perform the integral and obtain . The solution of the
components of the angular velocity in the body frame follows from the Euler equations, which can be analyzed
in three separate cases depending on the values of the principal moments of inertia.

3.1. Spherical top

For a spherical top, all moments of inertia are the same: /; = I = I3, and the Euler equations in Eq. (2.17)
become extremely simple, namely, @, = 0. For the spherical top system, all components of the angular velocity
in the body frame are therefore constant, and hence the components of the angular momentum in the body
frame are constant as well. It therefore follows that the matrix T in Eq. (3.13) remains constant in time, so that

T, = T,T/(0) =1. (3.22)

The frequency Q2 can also easily be determined by noting that @5 is constant and I; = I, = I3, so that Eq. (3.20)
gives

LLi? +1L,a?) L

Q:W:Z: |oo], (3.23)
leading to ¥ = Qf = |w|t. Eq. (3.19) then gives, with L(0)/L = o/,

T, = U(-—wt), (3.24)
so that one recovers the well-known result that for a spherical rotor

P=TT, = U(—wt). (3.25)

The rotation matrix P corresponds to a rotation by an angle of —|w|s around the axis w/|w|. Note that the
minus sign in the angle arises here from the fact that if the body rotates one way, the lab frame, as seen from
the body frame, rotates in the opposite way.

3.2. Symmetric top

For the case of a symmetric top, I; = I, but I, # I5. In that case, one can solve the Euler equations (2.17) in
terms of well-known functions:
@1 = @1(0) cos w,t + @,(0) sin w,t,
@, = —@;(0) sin w,t + @2(0) cos w,t, (3.26)
@3 = @5(0).
Here, the precession frequency w), is given by w, = (1 — 13/1,)@3(0). From these equations, it is evident that
L, =10} + d)%]l/ * is conserved for a symmetric top, which allows one to rewrite T, in Eq. (3.17) as a rotation
around the z-axis by an angle of — w,:
cosw,t  sinw,t 0
T, = | —sinw,t cosw,t 0 | =U(—wytz). (3.27)
0 0 1
The final rotation angle y can be determined by noting that

L&} +Lo}) L
Q _ (zlfj‘;l + 225’(;2) — (328)
Loy + 1505 I
Again this is a constant but, in contrast to the spherical case, no longer equal to ||, so
Y= Qr (3.29)
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The second rotation T, in Eq. (3.16) is therefore given by Eq. (3.19) with = L¢#/1}, i.e.,

T, = U(—L(0)t/I)). (3.30)
As a result, the rotation matrix P for a symmetric top is given by
P =TT, = U—w,z)U(-L(0)t/I,). (3.31)

3.3. Asymmetric top

For a general asymmetric top, all moments of inertia are distinct: I, # I, # I3 # I;. The moments of inertia
can be ordered in increasing order of magnitude, and we will choose to call the middle one always I,, while
either /; or I is the largest one. In the absence of forces and torques, Eq. (2.17) is integrable since the energy
ERr and the norm of the angular momentum L are conserved quantities in the body frame. To ensure all quan-
tities occurring in the solutions are real-valued (rather than complex-valued), one needs to consider the quan-
tities Er and L?/(21,) and make sure that [18]

2
Iy >1,>1; if ER >—
1 2 3 I LR 20

2

27]2'

(3.32)
I <, <1z ifER<

We will refer to this as the Jacobi ordering. Either situation can always be realized by choosing which principal
axis of the body to call the first, second or third.
Once the Jacobi ordering is adopted, the solution of the Euler equations is given by [18-20]

W) = d)]mCl’l(CO[,l + €|m), (333)
@y = Dypsh(wyt + |m), (3.34)
W3 = O3udn(w,t + &jm), (3.39)

where sn, cn and dn are Jacobi elliptic functions [21-23], and

. . L* —211E

@1, = sgn(@;(0)) 11(117_31;;, (3.36)
- - —20IE

W2y = 7Sgn(Q)1 (0)) 12(]27_3];){, (337)
. L* —21E

W3 = sgn(m3(0)) W—AR (3.38)

L —20ER)(I5 — 1
= sgn(l, — I5)sgn(d3(0 \/ 7 112‘]3 3 2)’ (3.39)

(I —2LER) (I, — 1)

3.40
(L =2LER)(s— 1)’ (3.40)
& = —yty = F(@,(0)/,|m), (3.41)
where in the last equation, F is the incomplete elliptic integral of the first kind [21], defined as®
* dr
m) = —_— 3.42
) /0 V1—m?V1 — ¢ (3:42)

* We deviate here from the somewhat more usual notation F(o|n) = F(x|m) where x = sina.
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To give an idea of the behavior of elliptic functions, Fig. 1 shows a plot of the elliptic functions for two
values of the elliptic parameter, m = 0.81 and m = 0.998. It is evident from the plots that the elliptic functions
are periodic functions of their first argument, and resemble the sine, cosine and the constant function 1 unless
the value of m is close to one. In other words, the elliptic parameter m determines how closely the elliptic func-
tions resemble their trigonometric counterparts. For m = 0, the functions cn, sn and dn reduce to cos, sin and
1, respectively. Note that the constant function 1 is reminiscent of the conservation of @; (cf. Eq. (3.26)) in the
case of the symmetric top. Indeed, for I = I, Eq. (3.40) shows that m = 0.

Three more numbers can be derived from the elliptic parameter m which play an important role in the prop-
erties of elliptic functions. These are the quarter-period K= F(1|m), the complementary quarter-period
K' = F(1|1 — m) and the nome q = exp(—nK'/K), which is a parameter that appears in various series expan-
sions of elliptic functions. In fact, the period of the elliptic functions cn and sn is equal to 4K, while that
of dn is 2K.

Given the solution of the Euler equations in Egs. (3.34), (3.35), the matrix T in Eq. (3.13) is completely
specified. On the other hand, to solve for the time dependence of T, in Eq. (3.14), the integral in Eq. (3.21)
must be performed. Unlike to previous two cases, the integrand 2 of i, as given by Eq. (3.20), is not a con-
stant. Despite this complication, the integral can still be performed explicitly using some properties of elliptic
functions as we will now show. It will require a bit of complex analysis to integrate € over time, so the reader
may wish to skip this technical part and move on to the answer in Eq. (3.54) (where the function ¢ is the first
Jacobi function [22,21]).

a I P N T /
N2 \ ‘
, X 7
/ A‘. ..0 \ I‘/
05F 7/ \%eoooom \\ / 1
N\ \ 72
s |/ \ \ I
§ 0
2 ; l
=1 ! /
L N \ /
\
\ ’
} | | =—cn(x:;k) \ !
05— sn(x;k) AN \ 2
=« s dn(x;k) N /
[ === cos(nx/(2K)) AN X
sin(mx/(2K)) \\\ // b
_10
X/(4K)
1 _ UK T s
b \\/ \\ . T s
/0 ' /
AVAS \ o
0‘5 %I \\ I- // —
\ AN . !
VAR \ '
i \ / |
g \ \ 'l
5 . o
! ' ,
N \ \ I
\ \ ) I
) | | = cn(x;k) \ \ ’ IA
0.5 — — sn(x;k) N \ / /
<o s dn(xh) K s
[=-=-=-- cos(mx/(2K)) AN / -
sin(mx/(2K)) AN X d
-1 ‘ o5 B
5 0.5 !
x/(4K)

Fig. 1. Examples of the elliptic functions cn (solid line), sn (bold dashed line), dn (dotted line) for (a) m = 0.81 (K=2.28..., ¢ =0.10...)
and (b) m =0.998 (K =4.50..., ¢ =0.33...). Also plotted are the cosine (short dashed line) and sine (thin short dashed line) with the same
period, for comparison.
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By definition, an elliptic function is a complex function f'(of a complex variable ¢) that is doubly periodic in
the sense that fir + 1) = f{t + ') = f(t), and whose singularities in the finite complex plane consist only of
poles. The doubly periodic function is completely specified by the values it takes inside the fundamental par-
allelogram spanned by 7 and 7’ in the complex plane. Moreover, it may be shown that an elliptic function is
determined by the singularities inside that parallelogram up to an additive constant [22,23]. In fact, for a ellip-

tic function f{¢) having n poles of order one at t = té’gle (j=1,...,n) in the fundamental parallelogram with
residues r;, one may write (Ref. [22, §21.5])
n ()
d TC(t - tpole)
flt) =4+ ;”j& log 9, (f m|, (343)

where A, is an additive constant and ¥,(u|m) is the first Jacobi theta function [22,21].

In order to apply Eq. (3.43), the singularity structure of 2 must be examined. A little analysis shows that the
function dn appearing in @; in Eq. (3.35) has only two poles of order one with opposite residues in its fun-
damental parallelogram, and its periods are w,t = 2K and w,7" = 4iK’ (Ref. [21, §16.2]). Since any rational
function of elliptic functions is again an elliptic function, the function Q in Eq. (3.20) is also an elliptic function
with the same periods. From the form of Q in Eq. (3.20), one easily sees that any pole 7,41 of  in the complex
plane is due to a zero of the denominator, i.e.,

- L
3 (tpoie) = % (3.44)
3
Note that the poles of @; itself cancel in the numerator and the denominator in Eq. (3.20) leading to a limit

value of L/I;, and do not to lead to poles in Q.
Using Egs. (3.35), (3.44) is solved by

Optpote = £dn”! (j:

m> — &+ 2Kny + 4K'nsi. (3.45)
33y,

Here n; and n, are arbitrary integers and the two =+ signs are independent, thus denoting four possibilities.
Since dn changes sign when its argument is shifted over a half-period 2K’/ [21], one + sign in Eq. (3.45)
can be eliminated by changing the term +4K'n,i to +2K'n»i:

L
Wyl pole = :tdl’l_l( =
o 33,

m) — &4 2Kn; + 2K nsi.

Using that
dn~' (x|m) = i[K' — F(x"'|1 —m)],
(obtained by combining §16.3.3, §16.20.3 and §17.4.46 in Ref. [21]), one finds

. 1303,
wptpole =+1 |:K/ — F(%

1 - m>] — &+ 2Kn, + 2K nji.
Noting that for negative values of @;,, one can write K — F(l303,/L|1 —m) = sgn(®s,)K'—
F(I303,/L|1 —m) + 2K', we can rewrite this as

Optpole = Ein — & + 2Kny + 2K'nji, (3.46)
where we have defined

133,

n = sgn(@s,)K' — F< 1— m> (3.47)
Note that —K' <y < K.

The periodic structure in Eq. (3.46) can be understood as follows. The function Q depends on ¢ though dn?,
and dn has periods 2K and 4K’i. Note that even though dn changes sign when its argument is shifted over 2K,
this sign change leaves dn® and hence Q unchanged. From these considerations, it is evident that the actual
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periods of Q are 2K/w, and 2K'i/w,. Although the size of the fundamental parallelogram is dictated by the
function under consideration, the choice of its origin is free. Choosing the fundamental parallelogram to be
([—K — K'iYw,, [-K + K'i)w,), the two poles in the parallelogram are complex conjugates #,. and ¢
where

Optpole = —& + 1. (3.48)

pole>

The pole structure of the function Q(z) is illustrated in Fig. 2.
Itis straightforward to show that the residues of © at these poles are given by r = % for the pole at #,, and
—r = — 4 for the pole at £/, so that, using Eq. (3.43) with t = 2K/w,, the integrand Q may be written as

pole>

Q= A2+2;1 [logﬂl (2]( (wpt + & —1n) ) log 9, (2[( (wpt + & +1n) ‘mﬂ (3.49)

and further mampulated to obtain a form that can be easily integrated,

m) = {logd (s -+ ~im)} |

= ;Imlogﬁl< (wpt +&—1in) m)zAz jargﬂl( (wpt +&— )‘m) (3.50)

The constant 4, appearing in Eq. (3.50) can be obtained using the point 7 = 7, = —¢&/w,, at which time @, = 0

(cf. Eq. (3.34)) and Eq. (3.20) gives
Q(ty) = ILI (3.51)

Examining the right hand side of Eq. (3.50), noting that

~—

id
Q= A2+2d [logﬂl(zK(a)pt—i—s in

glogﬁ‘< (ot +2 = )‘m)_;?;logﬁ‘( =5

_ 1o, V) (& (wpt + & — i) |m)
2K 9 (& (wpt + & —1in)|m)’

wpt + & — )’m)

and using 91(—u|m) = —(u|m), Eq. (3.49) gives

e, 9, (52m)

Q(ty) = 4> — —— e 3.52
(to) K 0y (22m) (3.52)
Comparing Egs. (3.51) and (3.52), we see that
judl
L, mop () (3.53)
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Fig. 2. Periodic pole structure in the complex plane of the function €(z) as a function of the variable v = w,t. The fundamental
parallelogram is indicated by a bold dashed rectangle and the crosses are poles.
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Eq. (3.50) is now readily integrated to express the angle y in terms of the theta function as:

t
/ / /e .
wz/o A1) = A1+ Axt — arg (s (pt + .~ in)|m), (3.54)
where
4y = arg, (FE=11) (3.55)
| = arguv, K m |, .

and 4, is given by Eq. (3.53).

With this expression for , the matrix P = T T;T’f(()) is now fully specified, with T; and T, given in Egs.
(3.13) and (3.14), respectively. Unlike the special cases of spherical and symmetric rotors, no further simpli-
fications occur in the expressions for these matrices.

4. Numerical issues

In this section an efficient implementation of computing the exact solutions presented in the previous sec-
tion is outlined. Because the rotation matrices for spherical and symmetric tops in Eqgs. (3.25) and (3.31) are
easily implemented using Rodrigues’ formula [16], we focus on the case of an asymmetric rigid rotor. For this
case, the attitude matrix was expressed in terms of complex theta functions, which hinders a straightforward
and efficient numerical implementation. First it will be shown how all matrix elements in the attitude matrix
may expressed in terms of real quantities and implemented efficiently. At the end of the section, an algorithm
to compute the motion of an asymmetric rigid body will be presented.

4.1. Implementation

As discussed above, the matrix P can generally be written as a product of two rotation matrices in the form
T, T», or three rotations in the form T, T, T/ (0). For the implementation of the free motion of the asymmetric
top, we prefer the latter because it does not require Rodrigues’ formula to be applied twice and the matrix T, is
sparse which allows an efficient matrix multiplication. The extra matrix multiplication with T (0) can be cir-
cumvented by using B = T/ (0)A(0). The matrix T/ is given in Eq. (3.13) in terms of the components of the
angular momentum in the body frame, Zj = I;w;. The o, are given by Eqs. (3.33)—(3.35), which involve the
elliptic functions.

Although the occurrence of elliptic functions may seem complicated, there are standard numerical methods
to calculate the elliptic functions sn, cn and dn [21,24,25] that are very efficient and which makes them no more
problematic to use than standard transcendental functions such as sin or cos. The matrix T can therefore be
computed numerically in a straightforward way in terms of the standard elliptic functions.

The matrix T, is given in Eq. (3.14) and is a rotation by an angle y around the z-axis, with  given in (3.54).
As is evident from Eq. (3.14), only siny and cosy rather than the angle y itself need to be evaluated to con-
struct T,. Using Eq. (3.54) and the addition formulas for cos and sin, these may be expressed as

cosyy = cos(A; + Ayt) cosargd; + sin(4; + A,t) sinargv,
_cos(A4; + Axt)Red); + sin(A4; + Ast)Im ),

, (4.1)
V(Rew))? + (Imw, )’
siny = sin(4, + Ayt) cosargu — cos(4; + Ayt) sinargu
_sin(d4; + 4>t)Red); — cos(4; + A»t)Im ), 42)

V(Rew))? + (Imw;)?

where ¥; = V) (& (w,t + & — in)|m). Clearly, to compute these expressions, the real and imaginary parts of 9,
as well as the real constants 4; and A, must be computed.
Noting that the function ¥, has the following series expansion in the nome ¢ (Ref. [21, §16.27.1]),
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01 (u|m) —2q1/42 Y'q"" Y sin[(2n + 1)ul, (4.3)

the real and imaginary parts of ¥J; in Eq. (4.3) for a complex argument u = 5% (w,¢ + ¢ — in7), can be written as

Red, = 2¢'/* Z Y'q"" ) cosh (2n+ l)nn (2n + Dr(wyt + &)

n=0 2K 2K ’
’l t ~
Imd, = 72611/42 : n nn+1 sinl ( + )7577 S(2n+ )n(wp —l—z,).

The convergence of these series is extremely rapid due to the appearance of the ¢"""). In practice one rarely
needs more than three or four terms to get to machine precision.

Based on the series expansion of ¥, the constant 4 given in Eq. (3.55) can be evaluated as follows:

Im 4, (& (e — in)|m)
Ay = nm + arctan 2K : , 4.5
! Red) (& (¢ — in)|m) (43)

where n=0if Ret¥; >0, n=1if Re; <0 and Im¥ >0, and n = —1 if Rev; <0 and Im; <0.

For the constant A,, an expansion of the logarithmic derivative of 1J; can be utilized (Ref. [21, §16.29.1]):

' (ulm) -
=cotu+4 sin 2nu. 4.6
u(ulm) 2T (40
Using the expression for A, in Eq. (3.53), where u =inn/(2K) is purely imaginary and noting that coti
u= —icothu = (¢ — 1)/(¢** + 1) and siniu = isinhu = (" — e “)/2, one can write
) (iu|m) eZ“ + 1 -
i ) Znu = 2nmu ) 4.7
0 Gulm) — Z - an e™) (47)

Using the series expansion in Eq. (4.7), A, can be evaluated from

L  mw, 5—1—1 -

A, = 1—1+ 1 &MY, (4.8)
where
&= ek, (4.9)

The series in Eq. (4.8) converges if ¢g° < 1. Because —K < 5 < K’ and ¢ = exp(—nK'/K), one has ég* < ¢ <1 so
this series converges, and, because ¢ is typically small, usually quickly.

The above derivation assumed that the Jacobi ordering of Eq. (3.32) was satisfied. Although this can always
be realized by choosing which principal axis of the body to call the first, second or third, as is evident from Eq.
(3.32), the choice of principal axes depends on the initial values of the angular velocities. Often, instead of
choosing the axis depending on the initial conditions, it is preferable to work with a fixed convention in which
the principal axes are oriented in a particular way with respect to the masses of the body. In that case, one can
adopt the Jacobi ordering convention by introducing internal variables which differ when necessary from the
physical ones by a rotation. For instance, if I; > I, > I3 but it should be I; < I, < I3 according to Eq. (3.32),
one can apply the rotation matrix

0 0 1
U=|0 -1 0], (4.10)
1 0 0

which transforms between the internal and physical choices of principal axes by exchanging the x and z com-
ponents and reversing the y component. If the order of the moments of inertia already follows the Jacobi
ordering, U™ is effectively the identity matrix.
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4.2. Algorithm for the asymmetric top

Based on the above, the following algorithm can be set up to calculate the position of a rigid body at any
arbitrary time, given a set of initial conditions. For efficiency, the algorithm consists of two steps: an initial-
ization routine, in which some expressions are pre-calculated, and an evolution routine that calculates @ and A
at time ¢.

In the algorithm below, the functions sn, cn, dn and F are assumed to be available, but not the 1}; function.
See Refs. [24,25] for implementations of sn, cn, dn and F.

The initialization routine takes an initial angular velocity vector in the body frame @(0) = (w0, w0, W)
and inertial moments /., I, and I. (where it is assumed that /, is the middle one), and pre-computes a few vari-
ables as follows (in pseudo-code, in order to facilitate implementations in different programming languages):

Initialization(/y,I,,1., Dy, Dy, D0, A0))

COMPUTE L* = G §0 + 12w2 + G 30

COMPUTE 2E = [,&% +1 a) o + L2

IF (2E> L*/I, AND I, < 1) OR (2E < L*/I, AND I, > I.) THEN
SET orderflag
SET 11 :IZ, 12 = Iy and 13 = Ix
SET w19 = 0.0, W0 = —W)0 and mzp = Wy

COMPUTE L, = /o’ + B,

_ L, Dlyoyows 111301003
. L LL, LL,
COMPUTE [T} (0O)U']=| 0 —hew Loy
Ly Ly
ELSE LIy030 _ hoy Lo
L L L

UNSET orderflag
SET Il :Ix, Izzly and I3ZIZ
SET w19 = Wy, W20 = W0 and wzg = W

COMPUTE L, = /il + 0},

LiIzwwsg  Dlzoywyy Ly
LL, LL, L
COMPUTE | - 0
llwlo 126@ 03
END IF t t
COMPUTE B = 0)U*]A(0)

COMPUTE Dy = sgn wlo)\/(Lz 2EI3 (11 — 13))

COMPUTE @y, = —sgn(wio)y/ (> — 2615)/(1o(1> — 1))

COMPUTE w3, = sgn(ms) \/(L2 2EL)/(I3(1; — I))

COMPUTE w, = sgn(ly — Is)sgn(ws)y/ (L2 — 2E1,)(Is — 1) /(11 13)

COMPUTE m = (L — 2EL)(I, — L)/(L* — 2EL)(I; — 1))
COMPUTE & = F(wao/wa,|m)

COMPUTE K = F(1|m)

COMPUTE K’ = F(1|1 — m)

COMPUTE g = exp(—nK'/K)

COMPUTE 5 = sgn(w30)K' — F(lzw3,,/L,1 — m)

COMPUTE ¢ = exp(nn/K)

SET A = L/I; + nw,(& + 1)/(2K(E — 1))

SETn=1

REPEAT
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COMPUTE 84, = —(nw,/K)(¢™"/(1 — ¢"")(&" = &)
INCREMENT 4, by 04,
INCREMENT 7 by 1

UNTIL 04> <machine precision

COMPUTE NT = log(machine precision)/logg

SET ro=0 and ip=0

FORn=0TO NTDO

COMPUTE Cr[n] = "2qn (n+1)+1/4 cosh 2n+1)

—1)

COMPUTE ¢;[n ]7( 1)" ! 2gnrtD+1/4 i GrtUm 2”“ i

INCREMENT ro by c[n] sin 0™

INCREMENT iy by c;[n] cos (2"+”
END FOR
IF ro> 0 THEN k = 0 ELSE k = sgn(i)
COMPUTE A, = arctan(iy/ry) + kn
STORE orderflag, 11, 12, 13, W1y W2y W34y, N, (Up, &, Al, Az, NT, Cr[], Ci[] and B

END Initialization

The evolution routine can use the pre-computed expressions in the following way:

Evolution ()

COMPUTE @; = w,en(w,t + elm)

COMPUTE @, = wa,Sn(wyt + &|m)

COMPUTE @3 = w3, dn(w,t + &|m)

SET Re#; =0 and Imv¢; =0

FORn=0 TO NT DO
INCREMENT Red; by c¢,[n]sin((2n + 1)n(w,t + £)/(2K))
INCREMENT Im; by ¢[n]cos((2n + 1)n(w,t + €)/(2K))

END FOR

COMPUTE C =cos(A4; + A»t), S =sin(A; + Ayt)

COMPUTE cosyy = (CRe®;, + SIm®),)/y/Red + Im?

COMPUTE siny = (SRe®; — CIm,)/y/Red? + Imo?

COMPUTE L, = \/Iw} + L}

IF orderflag IS SET THEN

COMPUTE
L Loy
L 0 L
1 LA _ Dhlyoms _ Loy _ Lo
[U T]] - LL| L, L
1130103 _ Lo 1oy
LL; L, L

SWAP 6)1 and Cbz
CHANGE SIGN of @,

ELSE
COMPUTE
11130103 Loy 1o
LL, L, L
*p/ ] VoY EXORI0x 110y Iy
[U Tl] - LL, L, L
L 0 L300

h‘|

L



R. van Zon, J. Schofield | Journal of Computational Physics 225 (2007) 145-164 161

END IF
COMPUTE

cosyy siny 0
A=[UT|]| —siny cosy 0 |B
0 0 1

RETURN @, ,, 03 and A
END Evolution

Some remarks about this pseudo-code:

e The orderflag indicates whether the Jacobi ordering convention Eq. (3.32) is satisfied. If not, U* in Eq.
(4.10) is used. If Eq. (3.32) is satisfied, U" is set equal to the identity matrix.

e With these definitions, P is replaced by U* PU". This is accomplished simply by T} — U*T}.

e As a consequence, U" in Eq. (4.10) is only implicitly used in the combination [U*T}]

e The initial value of A(0) occurs as A(7) = U*T, T, T (0)U*A(0), so in the initialization routine, we only need
to store the combination B = T/ (0)U*A(0).

e The machine precision depends on the floating point precision used in the calculation; for 64 bit dou-
ble precision, this is of the order of 107 to 107'°.

e For clarity of the algorithm, matrix products have not been explicitly written out, and efficiency improve-
ments such as computing intermediate expressions and using a recursive evaluation for the sin’s and cos’s
have not been shown here.

e An implementation of this code in C, which includes these improvements, can be found on the internet at
http://www.chem.utoronto.ca/staff/JMS/rigidrotor.html.

5. Example

As an example, consider an object composed of six point masses which are arranged, in the body frame, at
the points («,0,0), (—a,0,0), (0,5,0), (0,—b,0), (0,0,c) and (0,0, —c). All points are assumed to have unit mass,
so that the inertial moments are given by I =2(b*+ ¢?), I, =2(a®>+ ¢?) and Iy = 2(a* + b%). Choosing
a>b>censures I} <1, <Is.

In particular we will consider ¢ =3, b =2 and ¢ =1, yielding I; = 10, I, =20 and I3 = 26. As initial con-
ditions we will take A(0) =1 and w(0) = (1,15,1). Because of the large value of the y-component of the angu-
lar velocity, one may expect motion to consist primarily of rotation around the y-axis. In Fig. 3a the
components of the angular velocity in the body frame have been plotted as a function of time, while in
Fig. 3b the projection on the x—z plane of the point masses that in the body frame are located at («,0,0)
(the ‘long axis’), (0,b,0) (the ‘middle’ axis’) and (0,0, ¢) (the ‘short axis’) are plotted. It is clear that the rota-
tional motion does not consist of small perturbations to a rotation around the y-axis. We stress once more
that, up to machine precision, the results in Fig. 3 are exact.

6. Discussion

In this paper, the general solution of the rotational motion of a rigid body in the absence of external torques
and forces was derived. Explicit expressions for the angular velocities and the attitude matrix were obtained in
terms of real quantities to facilitate numerical evaluation. Note that even though the solution of rotational
motion for bodies without a simple mass distribution contains generalizations of the familiar sine and cosine
functions, the motion typically appears quite complex and notably different from that of a spherical top.

The general solution of the equations governing rigid body dynamics in the absence of forces and torques
presented here is potentially useful in several important applications. The primary advantage of having in
hand analytical solutions of the equations of motion of a system lies in the fact that all relevant properties
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Fig. 3. Example of the exact solution. (a) @(¢), (b) position of the ‘axes’. For details see text.

of a soluble system can be determined at arbitrarily many and arbitrarily distant moments in time. Applica-
tions in which knowing exactly the position and orientation of a body at specific moments in time is para-
mount may benefit from the results presented here. Such applications are abundant in a wide variety of
contexts. For example, in astrophysics, many objects such as space crafts, asteroids, certain planets and
moons, behave on short time scales as rigid bodies. These bodies are not free since they feel typically weak
gravitational fields. However, if their dimensions are small enough compared to the gradients of the gravita-
tional field, gravitational forces effectively influence motion only of the center of mass, while the rotational
motion is that of a free rotor described here.

Another obvious application of the solution detailed in this paper is as a diagnostic tool for numerical inte-
gration techniques designed for rotating bodies with external torques. Such techniques are of considerable
interest, but to establish their accuracy, one needs to be able to compare results of approximate integration
schemes with exact results. To date most comparisons are carried out for free systems with a high degree
of symmetry and simple rotational motion [10]. Given the relative complexity of motion in the asymmetric
case compared with that of a spherical rotor, such comparisons do not appear to be very stringent.

The exact solution is also of practical use in symplectic integrators for use in continuous molecular dynam-
ics [15]. There are already various symplectic integrators using the exact solution of some part of the dynamics
[12-14], which generally seems to improve stability and accuracy over simple splitting methods [9-11,26].
However, these do not use the exact solution of the attitude matrix. The integrator of Celledoni and Séfstrom,
for example, uses the exact solution of the Euler equations but uses an approximate expression for the attitude
matrix [12]. Using the exact solution of the attitude matrix further improves the stability and accuracy of this
integrator [15].
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Perhaps the most direct application of the implementation of the exact solution is in simulating complex
rigid molecular systems using discontinuous molecular dynamics methods. In this approach, various compo-
nents of the system interact via discontinuous potentials, leading to impulsive forces and torques that act on
molecules at specific moments in time [1,2,27,5,28]. As a result, the motion of all bodies in the system is free
between impulsive events that alter the trajectory of the body via discontinuous jumps in the momenta or
angular velocities at discrete “collision” times. In order to determine the time at which molecules in the sim-
ulation interact, the exact location and orientation of all bodies in the system must be computable at arbitrary
times. If the configurations of the system are computed through numerical integration (using e.g. one of the
integrators in Refs. [9-12]), such simulations would become inefficient. For this reason, to date, most simula-
tions of rigid bodies interacting via discontinuous potentials have been restricted to systems in which rota-
tional motion is governed by the equations of a spherical rotor (see Refs. [2]). Armed with the results of
this paper, the technique of discontinuous molecular dynamics can now be applied to any rigid model-—sym-
metric or asymmetric—with discontinuous interactions of step-potential form. Examples of such studies can
be found in Refs. [4].
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